
Swiss Federal Institute of Technology Zurich

Fast Fourier Transform

Numerical Analysis Seminar

Stefan Wörner

Contents

1 Historical Introduction 1

2 Continuous and Discrete Fourier Transform 2
2.1 Continuous Fourier Transform . 2
2.2 Discrete Fourier Transform . 2

2.2.1 Trigonometric Interpolation . 3

3 Derivation of FFT 5
3.1 FFT for composite of two integers . 5
3.2 FFT for prime numbers . 6

4 Implementation 7
4.1 Recursive Implementation . 7
4.2 Iterative Implementation . 8

Bibliography 11

i

1 Historical Introduction

The history of the Fast Fourier Transform (FFT) is quite interesting. It starts in 1805,
when Carl Friedrich Gauss tried to determine the orbit of certain asteroids from sample
locations ([3]). Thereby he developed the Discrete Fourier Transform (DFT, see Defi-
nition 2.2), even before Fourier published his results in 1822. To calculate the DFT he
invented an algorithm which is equivalent to the one of Cooley and Tukey ([3], [2]). How-
ever, Gauss never published his approach or algorithm in his lifetime. It appeared that
other methods seemed to be more useful to solve this problem. Probably, that is why
nobody realized this manuscript when Gauss’ collected works were published in 1866.
It took another 160 years until Cooley and Tukey reinvented the FFT. In that time the
US-military was interested in a method to detect Soviet nuclear tests. One approach was
to analyze seismological time-series data and Tukey was in President Kennedy’s Science
Advisory Committee ([6]) that handled the problem. Between 1805 and 1965, several
scientists developed efficient methods to calculate the DFT, but none of them was as
general as Gauss’ or the one of Cooley and Tukey. Figure 1 gives an overview.

Figure 1.1: Principal Discoveries of Efficient Methods of Computing the DFT ([3])

1

2 Continuous and Discrete Fourier
Transform

This chapter provides the definitions of the Continuous Fourier Transform (CFT) and
the Discrete Fourier Transform (DFT) and motivates the DFT-formula with the trigono-
metric interpolation problem.

2.1 Continuous Fourier Transform

Definition 2.1 (Continuous Fourier Transform). Let f : [0, L] → C be a Riemann
integrable function with f(0) = f(L). The k-th complex Fourier-coefficient of f is defined
as

f̂k =
1
L

∫ L

0
f(x)e−2πi k

L
xdx, k ∈ Z (2.1)

and it follows the complex Fourier series of f :

f(x) =
∞∑

k=−∞
f̂ke

2πi k
L
x (2.2)

2.2 Discrete Fourier Transform

Definition 2.2 (Discrete Fourier Transform). Let x = (x0, ..., xN−1) ∈ CN , then the
DFT of x is defined as

x̂k =
1
N

N−1∑
j=0

xke
−2πi jk

N , k = 0, ..., N − 1 (2.3)

and x̂ = (x̂0, ..., x̂N−1).

This can be written as a matrix-vector-multiplication x̂ = WNx with

(WN)ij =
1
N
e−2πi ij

N (2.4)

where WN is called the Fourier-matrix. This implies that the number of needed complex
multiplications is equal to N2 and the number of needed additions is N · (N − 1), i.e. an
arithmetic complexity of O(N2).

2

2 Continuous and Discrete Fourier Transform

2.2.1 Trigonometric Interpolation

This section motivates the DFT with the trigonometric interpolation of a function. Let
F = (f0, ..., fN−1) ∈ CN , be equidistant samples of a function f : [0, L]→ C. The CFT
is a method to calculate the coordinates of f relative to the infinite basis e2πi

k
L
x, k ∈ Z.

Now, we want to approximate f by the N functions e2πi
k
L
x, k = 0, ..., N − 1, i.e.

f̃(x) =
N−1∑
k=0

cke
2πi k

L
x (2.5)

where the ck should be chosen such that f̃(xj) = fj , xj = j · LN , j = 0, ..., N − 1.

Theorem 2.1. The ck in (2.5) are exactly the DFT-values of F .

Proof.

f̃(xj) =
N−1∑
k=0

cke
2πi k

L
jL
N (2.6)

=
N−1∑
k=0

cke
2πi kj

N (2.7)

=
N−1∑
k=0

(
1
N

N−1∑
l=0

fle
−2πi kl

N

)
e2πi

kj
N (2.8)

=
N−1∑
l=0

(
1
N

N−1∑
k=0

e2πi
k(j−l)
N

)
︸ ︷︷ ︸

=:D(j,l)

fl (2.9)

This yields the result if D(j, l) is equal to δjl, i.e. the Kronecker-Delta.

1. if j = l:

D(j, j) =
1
N

N−1∑
k=0

e−2πi
k(j−j)
N (2.10)

=
1
N

N−1∑
k=0

e0 (2.11)

=
1
N

N−1∑
k=0

1 =
1
N
N = 1 (2.12)

3

2 Continuous and Discrete Fourier Transform

2. if j 6= l:

D(j, j) =
1
N

N−1∑
k=0

e−2πi
k(j−l)
N (2.13)

=
1
N

N−1∑
k=0

(
e−2πi

(j−l)
N

)k
(2.14)

geom.
=

series

1
N

1−
(
e−2πi j−l

N

)N
1− e−2πi j−l

N

(2.15)

=
1− 1

1− e−2πi j−l
N

= 0 (2.16)

The denominator of the resulting fraction is not zero because j 6= l.

Therefore it is f(xj) = f̃(xj), ∀j = 0, ..., N − 1.

Theorem 2.1 implies, that the inverse DFT is defined as in (2.5). Since the calculation
of the DFT and the inverse DFT are almost equal, it follows, that a efficient method to
calculate the DFT, as the FFT algorithm, can be used to calculate the inverse DFT, as
well.

4

3 Derivation of FFT

This chapter provides the theoretical background for the FFT algorithm and discusses
some special but widely-used cases.

3.1 FFT for composite of two integers

Let N = N1 ·N2, N1, N2 ∈ N. The DFT of an vector (x0, ..., xN−1) ∈ CN is given by

x̂k =
N−1∑
j=0

xje
−2πi jk

N (3.1)

The prefactor 1
N is omitted, since this is the usual done. We can turn the one dimensional

formulation of the DFT into a two dimensional one with the following change of variables

j = j(a, b) = aN1 + b; 0 ≤ a < N2, 0 ≤ b < N1 (3.2)
k = k(c, d) = cN2 + d; 0 ≤ c < N1, 0 ≤ d < N2 (3.3)

It follows for xj = x(a, b), x̂k = x̂(c, d) and WN = e−
2πi
N :

x̂(c, d) =
N2−1∑
a=0

N1−1∑
b=0

x(a, b)W (aN1+b)(cN2+d)
N (3.4)

=
N1−1∑
b=0

W
b(cN2+d)
N

∑
a=0

x(a, b)W ad
N2︸ ︷︷ ︸

=:x̃(b,d)

(3.5)

since W acN1N2
N = W acN

N = 1 and W adN1
N = W ad

N2
. This can be considered as calculating

first N DFT-values with length N2 (i.e. x̃(b, d)) and then calculating N DFT-values
with length N1 (i.e. x̂(c, d) with new data x̃(b, d). This leads to a arithmetic complexity
of O(N ·N1 +N ·N2), which is much better than the direct approach with complexity
O(N2). As an result of this effort, we state the number of complex multiplications
needed for a DFT of one million sample points (i.e. N = 106) with the direct and FFT
approach.

The table shows, that the FFT approach needs 500 times less multiplications than
the direct approach. It can be applied to x̃(b, d), as well, if N2 is again not prime. In

5

3 Derivation of FFT

approach # multiplications

direct:
(
106
)2 = 1012

2 step fft: 106 ·
(
103 + 103

)
= 2 · 109

Table 3.1: Needed Multiplications

general, this approach can be applied for all prime factors of N =
∏PN
i=1 p

ri
i which would

lead to a arithmetic complexity of

O

(
N

(
PN∑
i=1

ri · pi

))
(3.6)

A widely-spread situation is given if N = 2n. In this case formula (3.6) implies the
well-known result for the arithmetic complexity of the FFT:

O

(
N

(
n∑
i=1

2

))
= O (N2n) = O(Nlog2(N)) (3.7)

An interesting result is given in ([6]) and ([7]). It states, that this arithmetic complexity
is a lower bound, i.e. there can not be an algorithm with a better arithmetic complexity.

3.2 FFT for prime numbers

The approach of the last section, does not work if N is a prime number. However, ([5])
provides two methods to calculate the DFT efficiently. The first one can be applied if
N − 1 is highly composite. In this case the problem can be solved by running three
FFT algorithms. The second case creates a larger data array with Ñ = 2n > N data
points. A usual FFT algorithm can be applied then. I will not provide more details
because this algorithm use methods to compute circular correlation functions via FFT
algorithms and this is not topic of this paper, for more details see ([5]). To conclude,
these approaches achieve even for N prime, very fast algorithms to compute the DFT,
i.e. the second one has arithmetic complexity O(Ñ · log2(Ñ)).

6

4 Implementation

This chapter gives two implementations of the FFT for N = 2n (this is called the radix-
2-algorithm) and discusses their advantages and disadvantages. To see how the two
methods can be derived, the following formula is provided, which is a special case of 3.4
& 3.5. The prefactor 1

N is again omitted.

x̂k =
2n−1∑
j=0

xje
−2πi jk

2n (4.1)

=
2n−1−1∑
j=0

x2je
−2πi

(2j)k
2n +

2n−1−1∑
j=0

x2j+1e
−2πi

(2j+1)k
2n (4.2)

=
2n−1−1∑
j=0

x2je
−2πi jk

2n−1

︸ ︷︷ ︸
=:x̂1

k

+ e2πi
k
2n

2n−1−1∑
j=0

x2j+1e
−2πi jk

2n−1

︸ ︷︷ ︸
=:x̂2

k

(4.3)

This result means (as before) that the DFT can be computed by computing two DFTs
with half the length and with all even indices, respectively all odd indices, as new data
vectors. This result is used to derive the implementations.

4.1 Recursive Implementation

The recursive FFT algorithm is a classical divide and conquer algorithm. It is easy to
verify that x̂1

k = x̂1
k+N/2 and x̂2

k = −x̂2
k+N/2, k = 0, ..., N/2 − 1. Therefore Formula 4.1

leads immediately to the Matlab code provided in Algorithm 1. The implementation
is quite short and easy and the arithmetic complexity is O(N · log2(N)). However, the
space complexity of this implementation is not very good. The function is called twice
in every recursion and in total an array of length 2n has to be stored n times (Stack
problem). This leads to a space complexity of O (2n · n). To store one complex number,
two double variables are needed, i.e. 64 Bit = 8 Byte. For about one million samples
(e.g. 220 = 1048576) the algorithm needs at least 20 · 1048576 · 8 = 160 Megabyte. As
we will see in the next section, the iterative implementation will just need 8 Megabyte
for the data, i.e. an in-place algorithm.

7

4 Implementation

Algorithm 1 Recursive FFT
function y = fft_rec(x)
n = length(x);
if n == 1

y = x;
else

m = n/2;
y_top = fft_rec(x(1:2:(n-1)));
y_bottom = fft_rec(x(2:2:n));
d = exp(-2 * pi * i / n) .^ (0:m-1);
z = d .* y_bottom;
y = [y_top + z , y_top - z];

end

4.2 Iterative Implementation

The iterative implementation of the FFT algorithm is not as straight forward as the
recursive. In Formula 4.1 the data is divided in two arrays. The first one contains all
even and the second one all odd indices, respectively. If the Formula is applied again to
the subproblems, there are four arrays and so on. Figure 4.1 shows for N = 8 how the
indices are permuted if this approach is applied log2(N) = 3 times.

Figure 4.1: Data permutation for iterative FFT ([1])

This method is constructive for an arbitrary N = 2n. It shows, that if the data is

8

4 Implementation

rearranged in this manner, the DFT can be calculated as shown in Figure 4.2, where
two Elements are merged with the same method as in Algorithm 1. F (2, 0) is the DFT
of (x0, ..., x7).

Figure 4.2: FFT - Scheme for N = 8 ([4])

The problem which is still to be solved is the rearrangement of the data. This can
easily be done with a so called bit inversion. This means that the index k is written in
binary representation and then read backwards. The new binary value is the permuted
index. This is illustrated in Table 4.1

Index (dec) Index (bin) Inv. Index (bin) Inv. Index (dec)

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Table 4.1: Bit Inversion ([4])

Theorem 4.1. The permutation described through Figure 4.1 is equivalent to the bit
inversion.

Proof. The proof covers just the case where N = 8. But it is instructive and it is easily
seen, that it holds for every N = 2n. The binary representation of an index k and its

9

4 Implementation

bit inversion, denoted by σ(k), can be written as

k =
2∑
j=0

bj2j (4.4)

σ(k) =
2∑
j=0

b2−j2j (4.5)

The steps in the graph can be written as

k0 = k (4.6)

k1 = (k div 2) + b0 · 22 (4.7)

k2 = ((k div 2) div 2) + b1 · 21 + b0 · 22 (4.8)

= b2 · 20 + b1 · 21 + b0 · 22 (4.9)

=
2∑
j=0

b2−j2j (4.10)

which is equal to the bit inversion of k.

Matlab provides a command for the bit inversion: ”bitrevorder(x)”. This leads to the
Matlab code provided in Algorithm 2.

Algorithm 2 Iterative FFT ([4])
function y = fft_it(x)
n = length(x);
x = x(bitrevorder(1:n));
q = round(log(n)/log(2));
for j = 1:q

m = 2^(j-1);
d = exp(-2 *pi * i /m).^(0:m-1);
for k = 1:2^(q-j)

s = (k-1)*2*m+1; % start-index
e = k*2*m; % end-index
r = s + (e-s+1)/2; % middle-index
y_top = x(s:(r-1));
y_bottom = x(r:e);
z = d .* y_bottom;
y = [y_top + z, y_top - z];
x(s:e) = y;

end
end

10

Bibliography

[1] E. Oran Brigham. The Fast Fourier Transform And Its Applications. Signal Processing Series.
Prentice-Hall, 1988.

[2] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation of Complex
Fourier Series. 1965.

[3] Michael T. Heideman, Don H. Johnson, and C. Sideny Burrus. Gauss and the History of the Fast
Fourier Transform. Archive for History of Exact Sciences (Springer), 34(3):265–277, September
1985.

[4] Robert Plato. Numerische Mathematik kompakt. Numerische Mathematik. Vieweg, 2000.

[5] C. M. Rader. Discrete Fourier Transforms when the number of data samples is prime. Proceedings
of the IEEE, 56(6):1107 – 1108, June 1968.

[6] Daniel N. Rockmore. The FFT: An Algorithm the whole Family can use. Computing in Science
And Engineering, 2(1):60–64, January 2000.

[7] Shmuel Winograd. Arithmetic Complexity of Computations, volume 33 of Regional Conference
Series in Applied Mathematics. CBMS-NSF, 1980.

11

	Historical Introduction
	Continuous and Discrete Fourier Transform
	Continuous Fourier Transform
	Discrete Fourier Transform
	Trigonometric Interpolation

	Derivation of FFT
	FFT for composite of two integers
	FFT for prime numbers

	Implementation
	Recursive Implementation
	Iterative Implementation

	Bibliography

